Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 9(4): 2134-2140, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38626725

RESUMO

Imaging the surface charge of biomolecules such as proteins and DNA, is crucial for comprehending their structure and function. Unfortunately, current methods for label-free, sensitive, and rapid imaging of the surface charge of single DNA molecules are limited. Here, we propose a plasmonic microscopy strategy that utilizes charge-sensitive single-crystal monolayer WS2 materials to image the local charge density of a single λ-DNA molecule. Our study reveals that WS2 is a highly sensitive charge-sensitive material that can accurately measure the local charge density of λ-DNA with high spatial resolution and sensitivity. The consistency of the surface charge density values obtained from the single-crystal monolayer WS2 materials with theoretical simulations demonstrates the reliability of our approach. Our findings suggest that this class of materials has significant implications for the development of label-free, scanning-free, and rapid optical detection and charge imaging of biomolecules.


Assuntos
DNA , DNA/química , Compostos de Tungstênio/química , Microscopia/métodos
2.
Nano Lett ; 24(17): 5301-5307, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38625005

RESUMO

The accurate diagnosis of diabetic nephropathy relies on achieving ultrasensitive biosensing for biomarker detection. However, existing biosensors face challenges such as poor sensitivity, complexity, time-consuming procedures, and high assay costs. To address these limitations, we report a WS2-based plasmonic biosensor for the ultrasensitive detection of biomarker candidates in clinical human urine samples associated with diabetic nephropathy. Leveraging plasmonic-based electrochemical impedance microscopy (P-EIM) imaging, we observed a remarkable charge sensitivity in monolayer WS2 single crystals. Our biosensor exhibits an exceptionally low detection limit (0.201 ag/mL) and remarkable selectivity in detecting CC chemokine ligand 2 (CCL2) protein biomarkers, outperforming conventional techniques such as ELISA. This work represents a breakthrough in traditional protein sensors, providing a direction and materials foundation for developing ultrasensitive sensors tailored to clinical applications for biomarker sensing.


Assuntos
Biomarcadores , Técnicas Biossensoriais , Quimiocina CCL2 , Nefropatias Diabéticas , Humanos , Nefropatias Diabéticas/urina , Nefropatias Diabéticas/diagnóstico , Técnicas Biossensoriais/métodos , Quimiocina CCL2/urina , Biomarcadores/urina , Limite de Detecção , Técnicas Eletroquímicas/métodos
3.
Small ; : e2312175, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38534021

RESUMO

Ultrasensitive detection of biomarkers, particularly proteins, and microRNA, is critical for disease early diagnosis. Although surface plasmon resonance biosensors offer label-free, real-time detection, it is challenging to detect biomolecules at low concentrations that only induce a minor mass or refractive index change on the analyte molecules. Here an ultrasensitive plasmonic biosensor strategy is reported by utilizing the ferroelectric properties of Bi2O2Te as a sensitive-layer material. The polarization alteration of ferroelectric Bi2O2Te produces a significant plasmonic biosensing response, enabling the detection of charged biomolecules even at ultralow concentrations. An extraordinary ultralow detection limit of 1 fm is achieved for protein molecules and an unprecedented 0.1 fm for miRNA molecules, demonstrating exceptional specificity. The finding opens a promising avenue for the integration of 2D ferroelectric materials into plasmonic biosensors, with potential applications spanning a wide range.

4.
Phys Chem Chem Phys ; 25(48): 32863-32867, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38048069

RESUMO

[CH3NH3][Co(HCOO)3] is the first perovskite-like metal-organic framework exhibiting spin-driven magnetoelectric effects. However, the high-pressure tuning effects on the magnetic properties and crystal structure of [CH3NH3][Co(HCOO)3] have not been studied. In this work, alongside ac magnetic susceptibility measurements, we investigate the magnetic transition temperature evolution under high pressure. Upon increasing the pressure from atmospheric pressure to 0.5 GPa, TN (15.2 K) remains almost unchanged. Continuing to compress the sample results in TN gradually decreasing to 14.8 K at 1.5 GPa. This may be due to pressure induced changes in the bond distance and bond angle of the O-C-O superexchange pathway. In addition, by using high pressure powder X-ray diffraction and Raman spectroscopy, we conducted in-depth research on the pressure dependence of the lattice parameters and Raman modes of [CH3NH3][Co(HCOO)3]. The increase in pressure gives rise to a phase transition from the orthorhombic Pnma to a monoclinic phase at approximately 6.13 GPa. Our study indicates that high pressure can profoundly alter the crystal structure and magnetic properties of perovskite type MOF materials, which could inspire new endeavors in exploring novel phenomena in compressed metal-organic frameworks.

5.
J Colloid Interface Sci ; 651: 938-947, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37579668

RESUMO

Ultrasensitive and rapid detection of biomarkers is among the upmost priorities in promoting healthcare advancements. Improved sensitivity of photonic sensors based on two-dimensional (2D) materials have brought exciting prospects for achieving real-time and label-free biosensing at dilute target concentrations. Here, we report a high-sensitivity surface plasmon resonance (SPR) RNA sensor using metallic 2D GeP5 nanosheets as the sensing material. Theoretical evaluations revealed that the presence of GeP5 nanosheets can greatly enhance the plasmonic electric field of the Au film thereby boosting sensing sensitivity, and that optimal sensitivity (146° RIU-1) can be achieved with 3-nm-thick GeP5. By functionalizing GeP5 nanosheets with specific cDNA probes, detection of SARS-CoV-2 RNA sequences were achieved using the GeP5-based SPR sensor, with high sensitivity down to a detection limit of 10 aM and excellent selectivity. This work demonstrates the immense potential of GeP5-based SPR sensors for advanced biosensing applications and paves the way for utilizing GeP5 nanosheets in novel sensor devices.


Assuntos
Técnicas Biossensoriais , COVID-19 , Humanos , Ressonância de Plasmônio de Superfície/métodos , RNA Viral , COVID-19/diagnóstico , SARS-CoV-2/genética , Técnicas Biossensoriais/métodos
6.
Small ; 19(45): e2303026, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37394706

RESUMO

Plasmonic biosensing is a label-free detection method that is commonly used to measure various biomolecular interactions. However, one of the main challenges in this approach is the ability to detect biomolecules at low concentrations with sufficient sensitivity and detection limits. Here, 2D ferroelectric materials are employed to address the issues with sensitivity in biosensor design. A plasmonic sensor based on Bi2 O2 Se nanosheets, a ferroelectric 2D material, is presented for the ultrasensitive detection of the protein molecule. Through imaging the surface charge density of Bi2 O2 Se, a detection limit of 1 fM is achieved for bovine serum albumin (BSA). These findings underscore the potential of ferroelectric 2D materials as critical building blocks for future biosensor and biomaterial architectures.

7.
J Phys Condens Matter ; 34(48)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36174548

RESUMO

Pressure, as an independent thermodynamic parameter, is an effective tool to obtain novel material system and exotic physical phenomena not accessible at ambient conditions, because it profoundly modifies the charge, orbital and spin state by reducing the interatomic distance in crystal structure. However, the studies of magnetoelectricity and multiferroicity are rarely extended to high pressure dimension due to properties measured inside the high pressure vessel being a challenge. Here we reported the temperature-magnetic field-pressure magnetoelectric (ME) phase diagram of Y type hexaferrite Ba0.4Sr1.6Mg2Fe12O22derived from static pyroelectric current measurement and dynamic magnetodielectric in diamond anvil cell and piston cylinder cell. We found that a new spin-driven ferroelectric phase emerged atP= 0.7 GPa and sequentially ME effect disappeared aroundP= 4.3 GPa. The external pressure may enhance easy plane anisotropy to destabilize the longitudinal conical magnetic structure with the suppression of ME coefficient. These results offer essential clues for the correlation between ME effect and magnetic structure evolution under high pressure.

8.
Inorg Chem ; 61(25): 9631-9637, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35696435

RESUMO

Multiferroic materials with the cross-coupling of magnetic and ferroelectric orders provide a new platform for physics study and designing novel electronic devices. However, the weak coupling strength of ferroelectricity and magnetism is the main obstacle for potential applications. The recent research focuses on enhancing the coupling effect via synthesizing novel materials in a chemical route or tuning the multiferroicity in the physical way. Among them, pressure is an effective method to modify multiferroic materials, especially when the chemical doping has reached its tuning limit. In this work, we systemically studied the multiferroic properties in a hydrogen-bonded metal-organic framework (MOF) [(CH3)2NH2]Ni(HCOO)3 under high pressure. X-ray diffraction and Raman scattering reveal that a structural phase transition occurs in a pressure region of 6-9 GPa, and the crystal structure is greatly modified by pressure. With the ac magnetic susceptibility, pyroelectric current, and dielectric constant measurements, we obtain the multiferroic property evolution under high pressure and create a temperature-pressure phase diagram. Our study demonstrates that the pressure can modify the magnetic superexchange interaction and hydrogen bonding simultaneously in these perovskite-like MOFs. The multiferroic phase region has been expanded to higher temperature due to the pressure-enhanced spin-phonon coupling effect.

9.
ACS Appl Mater Interfaces ; 13(40): 47560-47571, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34597012

RESUMO

GeP5, as the most representative phosphorus-based material in two-dimensional layered phosphorous compounds, has shown a fairly bright application prospect in the field of energy storage because of its ultrahigh electrical conductivity. However, high-yield exfoliation methods and effective structure construction strategies for GeP5 nanosheets are still missing, which completely restricts the further application of GeP5-based nanocomposites. Here, we not only improved the yield of GeP5 nanosheets by a liquid nitrogen-assisted liquid-phase exfoliation technique but also constructed the GeP5@RuO2 nanocomposites with the 0D/2D heterostructure by in situ introduction of ultrafine RuO2 nanoparticles on highly conductive GeP5 nanosheets using a simple hydrothermal synthesis method, and then applying it to micro-supercapacitors (MSCs) as electrode materials through a mask-assisted vacuum filtration technique. It is precisely because of the synergy of the electrical double-layer material, GeP5 nanosheets and the pseudocapacitance material RuO2 nanoparticles that endows the GeP5@RuO2 electrode with outstanding electrochemical performance in micro-supercapacitors with a large specific capacitance of 129.5 mF cm-2/107.9 F cm-3, high energy density of 17.98 µWh cm-2, remarkable long-term cycling stability with 98.4% capacitance retention after 10 000 cycles, the exceptional mechanical stability, outstanding environmental stability, and excellent integration features. This work opens up a new avenue to construct GeP5-based nanocomposites as a most promising novel electrode material for practical application in flexible portable/wearable micro-nanoelectronic devices.

10.
Biosens Bioelectron ; 194: 113596, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34500226

RESUMO

Structural defects play an important role in exploitation of two-dimensional layered materials (2DLMs) for advanced biosensors with the increasingly high sensitivity and low detection limit. Grain boundaries (GBs), as an important type of structural defect in polycrystalline 2DLM films, potentially provide sufficient active defect sites for the immobilization of bioreceptor units via chemical functionalization. In this work, we report the selective functionalization of high-density GBs with complementary DNA receptors, via gold nanoparticle (AuNP) linkers, in wafer-scale polycrystalline monolayer (1L) W(Mo)S2 films as versatile plasmonic biosensing platforms. The large surface area and GB-rich nature of the polycrystalline 1L WS2 film enabled the immobilization of bioreceptors in high surface density with spatial uniformity, while the AuNPs perform not only as bioreceptor linkers, but also promote detection sensitivity through surface plasmon resonance enhancement effect. Therefore, the presented biosensor demonstrated highly sensitive and selective sub-femto-molar detection of representative RNA sequences from the novel coronavirus (RdRp, ORF1ad and E). This work demonstrates the immense potential of AuNP-decorated GB-rich 2DLMs in the design of ultra-sensitive biosensing platforms for the detection of biological targets beyond RNA, bringing new opportunities for novel healthcare technologies.


Assuntos
Técnicas Biossensoriais , COVID-19 , Nanopartículas Metálicas , Ouro , Humanos , SARS-CoV-2
11.
Nat Commun ; 12(1): 3870, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162881

RESUMO

Emerging two-dimensional (2D) layered materials have been attracting great attention as sensing materials for next-generation high-performance biological and chemical sensors. The sensor performance of 2D materials is strongly dependent on the structural defects as indispensable active sites for analyte adsorption. However, controllable defect engineering in 2D materials is still challenging. In the present work, we propose exploitation of controllably grown polycrystalline films of 2D layered materials with high-density grain boundaries (GBs) for design of ultra-sensitive ion sensors, where abundant structural defects on GBs act as favorable active sites for ion adsorption. As a proof-of-concept, our fabricated surface plasmon resonance sensors with GB-rich polycrystalline monolayer WS2 films have exhibited high selectivity and superior attomolar-level sensitivity in Hg2+ detection owing to high-density GBs. This work provides a promising avenue for design of ultra-sensitive sensors based on GB-rich 2D layered materials.

12.
J Phys Chem Lett ; 11(22): 9566-9571, 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33119325

RESUMO

Perovskite-like ABX3 metal-organic frameworks (MOFs) have gathered great interest due to their intriguing chemical and physical properties, including their magnetism, ferroelectricity, and multiferroicity. Pressure is an effective thermal parameter in tuning related properties in MOFs due to the adjustable organic framework. Though spectrum experiments have been made on the structural evolution during decompression, there is a lack of electrical studies on the order-disorder ferroelectric transition in the metal-organic frameworks under pressure. In this work, we use a static pyroelectric current measurement, a dynamic dielectric method combined with a Raman scattering technique with applying in situ pressure, to explore the order-disorder ferroelectric transition in [(CH3)2NH2]Co(HCOO)3. The ferroelectric transition vanishes around the external pressure of 1.6 GPa, emerging with a new paraelectric phase. Another phase transition was observed at 6.32 GPa, mainly associated with the distortive transition of DMA+ cations. A phenomenological theory of ferroelectricity vanishing at 1.6 GPa for [(CH3)2NH2]Co(HCOO)3 is also discussed. Our study gives a comprehensive understanding in the pressure tuning of ferroelectric properties in hybrid inorganic-organic materials.

13.
Nanotechnology ; 31(9): 095703, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-31711048

RESUMO

It involves invariably strong expectations and a tough challenge to explore lightweight microwave absorption materials with high efficiency and agile tenability. Here, we successfully synthesized CoFex@Co nanoparticles embedded into a carbon matrix that was directly derived from the metal organic frameworks (MOFs) via a facile method. Benefiting from the unique multi-dimensional construction and synergistic effects of carbon material with magnetic nanoparticles in both the electromagnetic energy loss and impedance matching, CoFe0.26@Co@C composite exhibited excellent microwave absorption performance, which showed a minimum reflection loss of -62.5 dB at the thickness of 1.5 mm and a broad absorption bandwidth of 14.7 GHz exceeding -10 dB at the thickness range of 1.4 to 5 mm. This study not only provides a reference for future preparation of MOF-based lightweight microwave absorption materials, but also offers the possible application owing to its simple procedure and outstanding absorption properties.

14.
ACS Appl Mater Interfaces ; 11(32): 29382-29387, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31342742

RESUMO

Broad-band radio frequency (RF) detection is of great interest for its potential applications in wireless charging and energy harvesting. Here, we demonstrate that the bandwidth of broad-band RF detection in spin-torque diodes based on magnetic tunnel junctions (MTJs) can be enhanced through engineering the interface perpendicular magnetic anisotropy (PMA) between the CoFeB free layer and the MgO tunnel barrier. An ultrawide RF detection bandwidth of over 3 GHz is observed in the MTJs, and the broad-band RF detection behavior can be modulated by tuning the free layer PMA. Furthermore, a wide RF detection bandwidth (about 1.8 GHz) can be realized even without any external bias field for free layers with a thickness of about 1.65 nm. Finally, the dependence of the broad-band RF detection bandwidth on external magnetic field and RF power is discussed. Our results pave the way for RF energy harvesting for future portable nanoelectronics.

15.
ACS Appl Mater Interfaces ; 11(23): 20979-20986, 2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31119937

RESUMO

Alloying is an effective way to modulate material's properties. In particular, graded alloying within a single domain of two-dimensional transition-metal chalcogenide (2D-TMC) is of great technological importance, for example, for achieving band gap modulations. Here, we report a facile method to grow gradient alloying of Mo1- xW xS2 monolayers with large domain sizes and high crystal qualities via the chemical vapor deposition technique. The as-grown Mo1- xW xS2 monolayers have a gradient composition of W from x = ∼0 to ∼1 in a single domain with a lateral dimension up to 300 µm, and the span in band gap can be readily tuned. Owing to the grading in band offsets, the compositionally graded Mo1- xW xS2 alloy monolayer demonstrates an excellent rectifying effect with the ratio of forward to reverse current up to ∼104. Moreover, phototransistors based on the compositionally graded Mo1- xW xS2 monolayers exhibit a high responsivity up to 298.4 A/W in the visible light regime, and particularly a decent responsivity of 28.7 A/W in the near-infrared regime. The control of band gap offset gradient and span in alloyed 2D-TMC semiconductors provides an additional degree of freedom in designing fascinating applications in achieving multifunctional optoelectronic devices on individual substrates.

16.
Nanotechnology ; 30(34): 345203, 2019 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-31108474

RESUMO

In two-dimensional layered materials, layer number and stacking order have strong effects on the optical and electronic properties. Tungsten disulfide (WS2) crystal, as one important member among transition metal dichalcogenides, has been usually prepared in a layered 2H prototype structure with space group P63/mmc ([Formula: see text]) in spite of many other expected ones such as 3R. Here, we report simultaneous growth of 2H and 3R stacked multilayer (ML) WS2 crystals in large scale by chemical vapor deposition and effects of layer number and stacking order on optical and electronic properties. As revealed in Raman and photoluminescence (PL) measurements, with an increase in layer number, 2H and 3R stacked ML WS2 crystals show similar variation of PL and Raman peaks in position and intensity. Compared to 2H stacked ML WS2, however, 3R stacked one always exhibits the larger red (blue) shift of Raman [Formula: see text] (A1g) peak and the appearance of PL A, B and I peaks at lower energies. Thereby, PL and Raman features depend on not only layer number but also stacking order. In addition, circularly polarized luminescence from two prototype WS2 crystals under circularly polarized excitation has also been investigated, showing obvious spin or valley polarization of these CVD-grown multilayer WS2 crystals.

17.
Nanotechnology ; 30(3): 035701, 2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30418944

RESUMO

Black phosphorus (BP) has recently drawn great attention in the field of electrocatalysis due to its distinct electrocatalytic activity for the oxygen evolution reaction (OER). However, the slow OER kinetics and the poor environmental stability of BP seriously limits its overall OER performance and prevents its electrocatalysis application. Here, sulfur (S)-doped BP nanosheets, which are prepared using high-pressure synthesis followed by liquid exfoliation, have been demonstrated to have much better OER electrocatalytic activity and environmental stability compared to their undoped counterparts. The S-doped BP nanosheets display a Tafel slope of 75 mV dec-1, which is a favorable value refered to the kinetics of OER in electrochemical tests. Notably, there is no degradation of S-doped BP nanosheets after six days exposure to ambient, indicating an excellent environmental stability of the S-doped BP. The density functional theory calculations show that the OER activity of BP originate from its crystal defects and heteroatom S doping can effectively enhance its OER activity and stability. These results highlight the doping effect on electrocatalytic activities and stability of BP and provide a simple and effective method to design highly efficient OER catalysts based on the modification of BP.

18.
Nanotechnology ; 29(40): 405703, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30010614

RESUMO

Nanostructure composites of ferromagnetic materials embedded in nanoporous carbon (NC) derived from metal-organic frameworks (MOFs) have attracted enormous attention due to their potential application in many fields, such as microwave absorption, energy storage, and conversion. The rational design of nanocomposites holds a determinant factor for overcoming the challenges involving the microwave absorption performance. Herein, CoS2/NC, CoP/NC, and CoS2-xPx/NC with a rhombic dodecahedral structure have been successfully fabricated by using the template cobalt-based MOFs (ZIF-67). A morphology analysis indicates that ferromagnetic nanoparticles are embedded in NC matrix. It is obvious that the rhombic dodecahedron can be maintained after the phosphorization and sulfurization of Co/NC derived from the thermal decomposition of ZIF-67. The microwave absorption performance can obviously be improved by the phosphorization and sulfurization of Co/NC. CoS2-xPx/NC exhibits an excellent microwave absorption property and the minimum reflection loss (RL) of CoS2-xPx/NC can reach -68 dB at 14.6 GHz with a thickness of 1.5 mm. An RL value less than -10 dB can be achieved in the microwave frequency range of 12.7-17.3 GHz (4.6 GHz) with a thickness of 1.5 mm for CoS2-xPx/NC. This article offers a novel way to fabricate cobalt-based materials/carbon composites for an excellent microwave absorber.

19.
Nanotechnology ; 29(23): 235604, 2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29558364

RESUMO

Through a facile self-assembled process, an ultralight reduced graphene oxide/black phosphorus (rGO/BP) composite aerogel was successfully fabricated. The BP nanosheets were homogeneously distributed throughout the rGO 3D framework, and the interfaces between rGO and BP possessed four kinds of interconnections, such as wrapping, wearing, bridging and weak linking. As an ultralight composite, the rGO/BP aerogel could easily stand on the stamen of a flower. Compared with pure rGO aerogel, the rGO/BP composite aerogel exhibited enhanced microwave absorption ability. The minimum reflection loss value of -46.9 dB with a thickness of 2.53 mm was obtained, and a wide absorption band of 6.1 GHz (RL < -10 dB) was achieved. The superior microwave absorption property was demonstrated to stem from the interfacial polarization loss mechanism in which the multiform interface interactions between the rGO skeleton and BP nanosheets played critical roles. The rGO/BP aerogel has great potential to be used as an ultralight microwave absorber.

20.
ACS Appl Mater Interfaces ; 10(11): 9663-9668, 2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-29481035

RESUMO

Black phosphorus (BP) has drawn great attention owing to its tunable band gap depending on thickness, high mobility, and large Ion/ Ioff ratio, which makes BP attractive for using in future two-dimensional electronic and optoelectronic devices. However, its instability under ambient conditions poses challenge to the research and limits its practical applications. In this work, we present a feasible approach to suppress the degradation of BP by sulfur (S) doping. The fabricated S-doped BP few-layer field-effect transistors (FETs) show more stable transistor performance under ambient conditions. After exposing to air for 21 days, the charge-carrier mobility of a representative S-doped BP FETs device decreases from 607 to 470 cm2 V-1 s-1 (remained as high as 77.4%) under ambient conditions and a large Ion/ Ioff ratio of ∼103 is still retained. The atomic force microscopy analysis, including surface morphology, thickness, and roughness, also indicates the lower degradation rate of S-doped BP compared to BP. First-principles calculations show that the dopant S atom energetically prefers to chemisorb on the BP surface in a dangling form and the enhanced stability of S-doped BP can be ascribed to the downshift of the conduction band minimum of BP below the redox potential of O2/O2-. Our work suggests that S doping is an effective way to enhance the stability of black phosphorus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA